
Copyright q 1998, Institute for Operations Research
and the Management Sciences
0092-2102/98/2805/0029/$5.00
This paper was refereed.

COMPUTERS/COMPUTER SCIENCE—SOFTWARE

INTERFACES 28: 5 September–October 1998 (pp. 29–55)

Design and Use of the Microsoft Excel Solver

Daniel Fylstra Frontline Systems Inc., PO Box 4288,
Incline Village, Nevada 89450

Leon Lasdon Department of Management Science and
Information Systems, College of Business
Administration, University of Texas,
Austin, Texas 78712

John Watson Software Engines, 725 Magnolia Street,
Menlo Park, California 94025

Allan Waren Computer and Information Science Department,
Cleveland State University, Cleveland, Ohio 44115

In designing the spreadsheet optimizer that is bundled with
Microsoft Excel, we and Microsoft made certain choices in de-
signing its user interface, model processing, and solution algo-
rithms for linear, nonlinear, and integer programs. We describe
some of the common pitfalls users encounter and remedies
available in the latest version of Microsoft Excel. The Solver
has many applications and great impact in industry and
education.

Since its introduction in February 1991,
the Microsoft Excel Solver has become

the most widely distributed and almost
surely the most widely used general-
purpose optimization modeling system.
Bundled with every copy of Microsoft Ex-
cel and Microsoft Office shipped during
the last eight years, the Excel Solver is in
the hands of 80 to 90 percent of the 35 mil-
lion users of office-productivity software
worldwide. The remaining 10 to 20 per-
cent of this audience use either Lotus
1-2-3 or Quattro Pro, both of which now
include very similar spreadsheet solvers,

based on the same technology used in the
Excel Solver.

This widespread availability has
spawned many applications in industry
and government. In education, increasing
numbers of MBA and undergraduate busi-
ness instructors have adopted the Excel
Solver as their tool for introducing stu-
dents to optimization: most management
science textbooks now include coverage of
the Excel Solver, and several recent texts
use it exclusively in the optimization
chapters.

We review the background and design

FYLSTRA ET AL.

INTERFACES 28:5 30

philosophy of the Excel Solver. We seek to
explain why the Excel Solver works the
way it does, to clear up some common
misunderstandings and pitfalls, and to
suggest ideas for good modeling practice
when using spreadsheet optimization. We
also briefly survey applications of the
Excel Solver in industry and education
and describe how practitioners who are
not affiliated with the OR/MS community
use it. The example models in this paper
are available on Practice Online at
(http://silmaril.smeal.psu.edu/pol.html)
and at http://www.frontsys.com/
interfaces.htm. Much more information—
over 200 web pages at this writing—is
available on Frontline Systems’ World
Wide Web site (http://www.frontsys.com).

The Microsoft Excel Solver combines the
functions of a graphical user interface
(GUI), an algebraic modeling language
like GAMS [Brooke, Kendrick, and
Meeraus 1992] or AMPL [Fourer, Gay, and
Kernighan 1993], and optimizers for linear,
nonlinear, and integer programs. Each of
these functions is integrated into the host
spreadsheet program as closely as possi-
ble. Many of the decisions we and Micro-
soft made in designing the Solver were
motivated by this goal of seamless
integration.

Optimization in Microsoft Excel begins
with an ordinary spreadsheet model. The
spreadsheet’s formula language functions
as the algebraic language used to define
the model. Through the Solver’s GUI, the
user specifies an objective and constraints
by pointing and clicking with a mouse
and filling in dialog boxes. The Solver
then analyzes the complete optimization
model and produces the matrix form re-

quired by the optimizers in much the
same way that GAMS and AMPL do.

The optimizers employ the simplex,
generalized-reduced-gradient, and branch-
and-bound methods to find an optimal so-
lution and sensitivity information. The
Solver uses the solution values to update
the model spreadsheet and provides sensi-
tivity and other summary information on
additional report spreadsheets.
Background and Design Philosophy
of the Excel Solver

The Microsoft Excel Solver and its coun-
terparts in Lotus 1-2-3 97 and Corel Quat-
tro Pro were not the first spreadsheet op-
timizers; that distinction belongs to What’s
Best!, conceived by Sam Savage, Linus
Schrage, and Kevin Cunningham in 1985
and marketed by General Optimization
Inc. for the Lotus 1-2-3 Release 2 spread-
sheet [Savage 1985]. What’sBest! is still
available in versions for each of the major
spreadsheets and is now sold and sup-
ported by Lindo Systems Inc. Other early
spreadsheet optimizers included Frontline
Systems’ What-If Solver [Frontline Sys-
tems 1990], Enfin Software’s Optimal Solu-
tions [Enfin Software 1988], and Lotus
Development’s Solver in earlier versions
of 1-2-3 [Lotus Development 1990].

The design approach of What-If Solver,
implemented in the graphical user inter-
face of Excel, was chosen by Microsoft
over several alternatives including
What’sBest!; by Borland (the original de-
velopers of Quattro Pro) over an earlier
solver developed internally by that com-
pany; and later by Lotus over their own
internally developed solver. A major rea-
son for this outcome, we believe, is that
the Excel Solver had as its design goal

MICROSOFT EXCEL SOLVER

September–October 1998 31

Figure 1: The Goal Seek feature of Microsoft
Excel predated the Solver. This feature uses
iterative methods to solve a simple equation
(formula in the “set cell” equal to the “value”)
in one variable (the “changing cell”).

“making optimization a feature of spread-
sheets,” whereas other packages, such as
What’sBest!, “use the spreadsheet to do
optimization.” In many small ways, the
Excel Solver caters to the tens of millions
of spreadsheet users, rather than to the
tens of thousands of OR/MS professionals.

Although OR/MS professionals readily
learn to use the Excel Solver, they often
find certain aspects of its design puzzling
or at least different from their expecta-
tions. In most cases, the differences are
due to (1) the architecture of spreadsheet
programs, (2) the expectations of the ma-
jority of spreadsheet users who are not
OR/MS professionals, or (3) the desires of
the spreadsheet vendors (Microsoft in the
case of the Excel Solver).
The Architecture of Spreadsheet
Programs

Because of the architecture of spread-
sheet programs, it is easy to create spread-
sheet models that contain discontinuous
functions or even nonnumeric values.
These models usually cannot be solved
with classical optimization methods. The
spreadsheet’s formula language is de-
signed for general computations and not
just for optimization. Indeed, Excel sup-
ports a rich variety of operators and sev-
eral hundred built-in functions, as well as
user-written functions. In contrast, GAMS,
AMPL, and similar modeling languages
include only a small set of operators and
functions sufficient for expressing linear,
smooth nonlinear, and integer optimiza-
tion models.
The Expectations of Spreadsheet Users

The Excel Solver was designed to meet
the expectations of spreadsheet users—in
particular, users of earlier versions of Ex-

cel—rather than traditional OR/MS pro-
fessionals. An example is the terminology
it uses in dialog boxes, such as “Target
Cell” (for the objective) and “Changing
Cells” (for the decision variables). We used
these terms—at Microsoft’s request—to
mirror the terms used in the Goal Seek
feature, which predated the Solver in
Excel and in other spreadsheet programs.
The Goal Seek feature, which spreadsheet
users often describe as “what-if in re-
verse,” solves a nonlinear function of one
variable for a specified value. Spreadsheet
users see the Excel Solver as a more pow-
erful successor to the Goal Seek feature
[Person 1997]. Figure 1 shows Excel’s Goal
Seek dialog box, and Figure 2 shows the
Solver Parameters dialog box with its
similar terminology.
The Desires of the Spreadsheet Vendors

The influence of the spreadsheet ven-
dors’ desires is reflected in the way the
Solver determines whether the model is
linear or nonlinear. By default, the Solver
assumes that the model is nonlinear. The
user must select the Assume Linear Model
check box in the Solver Options dialog box

FYLSTRA ET AL.

INTERFACES 28:5 32

Figure 2: The Solver Parameters dialog is used to define the optimization model. The terms
“Set Target Cell” (for the objective) and “Changing Cells” (for the variables) and the “Value
of” option were derived from the earlier Goal Seek feature.

to override this assumption; the Solver
does not attempt to automatically deter-
mine whether the model is linear by in-
specting the formulas making up the
model. Most of Excel’s several hundred
built-in functions and all user-written
functions would have to be treated as “not
linear” (smooth nonlinear or discontinu-
ous over their full domains) in an auto-
matic test. But users sometimes create
models using these functions and then
add constraints that result in a linear
model over the feasible region. Microsoft
wanted a general approach that would
support such cases and specified the use
of the check box, as well as the use of the
nonlinear solver as the default choice.
The Role of Bundled Spreadsheet
Solvers

The “free” bundled version of the Excel
Solver described in this paper and similar

products, such as What’sBest! Personal
Edition, represent the low end of the range
of spreadsheet solver functionality, capac-
ity, and performance. More powerful ver-
sions are available and these versions are
most often used to solve problems in in-
dustry. For example, where the standard
Excel Solver supports just 200 decision
variables, Frontline Systems’ Large-Scale
LP Solver (a component of the Premium
Solver Platform) supports up to 16,000
variables, and Lindo Systems’ What’sBest!
Extended Edition supports up to 32,000
variables. Table 1 summarizes the charac-
teristics of the Premium Solver products
offered by Frontline Systems.

Like most optimization software, the
Excel Solver has steadily improved in per-
formance over the years. Although solu-
tion times are model dependent, in overall
terms, the Solver in Excel 97 offers about

MICROSOFT EXCEL SOLVER

September–October 1998 33

Excel Built-In
Solver

Premium
Solver

Premium
Solver
Plus

Premium Solver
Platform

NLP variables/
constraints

200/100 `

bounds
400/200 `

bounds
400/200 `

bounds
1000/1000 ` bounds

LP variables/
constraints

200/
unlimited

800/unlimited 800/unlimited 2000/unlimited to
16,000/unlimited

Setup
performance

1x 1–50x 1–50x 1–50x

NLP
performance

1x 1x 1.5x 2–10x

LP performance 1x 2–3x 2–3x Large scale
MIP performance 1x 5–10x 25–50x 25–50x
Selection of

optimizers
Fixed set Fixed set Fixed set Multiple choices, field-

installable
LP/QP methods Simplex

w/bounds
Enhanced

simplex
w/bounds

Enhanced
simplex,
dual,
quadratic

Sparse simplex, LU,
Markowitz

MIP methods B&B Enhanced B&B Enhanced
B&B, P&P,
dual,
simplex

Enhanced B&B, P&P,
dual, simplex

NLP methods GRG2 GRG2 Enhanced
GRG2

LSGRG, SQP, etc.

Reports Standard:
Answer,
Limits,
Sensitivity

Standard `

Linearity,
Feasibility

Standard `

Linearity,
Feasibility

Standard ` Linearity,
Feasibility

Table 1: The characteristics of the enhanced Excel Solvers are summarized in this table. For in-
teger problems, “B&B” refers to branch and bound and “P&P” refers to preprocessing and
probing. For nonlinear problems, “GRG” refers to the generalized reduced gradient method
and “SQP” refers to sequential quadratic programming.

five times the performance of that in Excel
5.0 and perhaps 20 times the performance
of the earliest version in Excel 3.0 (assum-
ing a constant hardware platform). The
Premium Solver further improves mixed-
integer problem solution times by a factor
of 25 to 50 over the Excel 97 Solver
(Table 1). While spreadsheet solvers are
unlikely to compete with dedicated optim-
izers, such as CPLEX and OSL, they do
provide a practical platform for solving

real-world optimization problems.
User Interface and Selection
of Objectives, Decision Variables,
and Constraints

In the Excel Solver, as in an algebraic
modeling system, the optimization model
is defined by algebraic formulas (which
appear in spreadsheet cells). Excel’s for-
mula language can express a wide range
of mathematical relationships, but Excel
has no facilities for distinguishing decision

FYLSTRA ET AL.

INTERFACES 28:5 34

variables from other variables or objectives
or constraints from other formulas. Hence,
the Excel Solver provides both interactive
and user-programmable ways to specify
which spreadsheet cells are to serve each
of these roles.

In interactive use, the user selects Tools
Solver . . . from the Excel menu bar, dis-
playing the Solver Parameters dialog box
(Figure 2). As noted earlier, this dialog box
is patterned after the Goal Seek feature
(Figure 1). The “Value of” option offers a
way to directly solve goal-seeking prob-
lems using the Solver; when the user se-
lects this option and enters a target value,
an equality constraint is added to the opti-
mization model, and there is no objective
to be maximized or minimized. (Alterna-
tively, one may simply leave the Set Target
Cell edit box blank and enter an equality
constraint in the Constraint list box.) In
either case, the problem is solved with a
(constant) dummy objective, and the
Solver stops when the first feasible solu-
tion is found. In this way, the Excel Solver
fulfills spreadsheet users’ expectations of a
more powerful Goal Seek capability that
can be used to find solutions for systems
of equations and inequalities.
Decision Variables and the Guess Button

Model decision variables are entered in
the By Changing Cells edit box. Excel al-
lows one to enter a so-called multiple se-
lection, which consists of up to 16 ranges
(rectangles, rows or columns, or single
cells) separated by commas. Alternatively,
one may press the Guess button to obtain
an initial entry in the By Changing Cells
edit box. This feature often puzzles
OR/MS professionals; Ragsdale [1997] in-
cludes a sidebar saying that the “Solver

usually guesses wrong” and advising stu-
dents not to use it, but many spreadsheet
users find it useful. When one presses the
Guess button, the Solver places a selection
in the By Changing Cells edit box that in-
cludes all input (nonformula) cells on
which the objective formula depends. This
selection will usually include the actual
decision variables as a subset and may be
edited to remove ranges of cells that are
not decision variables (for example, those
that are fixed parameters in the model).
Constraints

The key issue in a spreadsheet solver’s
user interface is the method of specifying
constraints. What’sBest! originally used a
“Rule of Constraints” that required every
formula cell dependent on the variables to
be nonnegative—but this form was not in-
tuitive for typical spreadsheet users and
was not acceptable to the spreadsheet ven-
dors. (More recent versions of What’sBest!
use a new constraint representation.) In
the earlier Lotus-developed solver for
1-2-3, Lotus used logical expressions in the
spreadsheet’s formula language, including
the relational operators ,4, 4, and .4,
to represent constraints. The solver dialog
box simply offered an edit box in which a
range of cells containing such logical for-
mulas could be entered—thereby taking
full advantage of an existing spreadsheet
feature.

In the Excel Solver, in consultation with
Microsoft, we chose a different way of
specifying constraints, for several reasons.
First, spreadsheet logical formulas (expres-
sions that evaluate to TRUE or FALSE in
Excel, or 1 or 0 in Lotus 1-2-3) are more
general than constraints. They allow such
relations as ,, ., and ,. (not equal),

MICROSOFT EXCEL SOLVER

September–October 1998 35

which are not easily handled by current
optimization methods, as well as such log-
ical operators as AND, OR, and NOT. Sec-
ond, relations such as A1 . 4 0, are eval-
uated by the spreadsheet as strictly
satisfied or unsatisfied, whereas an optimi-
zation algorithm evaluates constraints
within a tolerance. For example, if A1 4

10.0000005, the Excel Solver would treat
A1 .4 0 as satisfied (using the default
Precision setting of 1016 or 0.000001), but
the logical formula 4 A1 .4 0 in a cell
would display as FALSE. Third, con-
straints almost always come in blocks or
indexed sets, such as A1:A10 .4 0, and it
is very advantageous for users to be able
to enter such constraints and later view
and edit them in block form. Hence, the
Excel Solver provides a Constraint list box
in the Solver Parameters dialog box where
users can add, change, or delete blocks of

constraints by clicking the corresponding
buttons.

In accord with the GUI conventions
used throughout Excel, one can select
blocks of cells for decision variables and
for left-hand sides and right-hand sides of
constraints by typing coordinates or by
clicking and dragging with the mouse.
The latter method is far more often used.
Excel also allows the user to define sym-
bolic names for individual cells or ranges
of cells (through the Insert Name menu
option). The Excel Solver will recognize
any names the user has defined for the ob-
jective, variables, and blocks of constraints
and will display them in the Solver Pa-
rameters dialog box (Figure 3).

For those who prefer to use spreadsheet
logical formulas for constraints, the Excel
Solver will read and write constraints in
this form, when the Load Model and Save

Figure 3: Excel users can define symbolic names for single cells or ranges of cells, which the
Solver will use. This dialog depicts the same model as in Figure 2 with the aid of defined
names, resulting in a much more readable model.

FYLSTRA ET AL.

INTERFACES 28:5 36

Figure 4: The Solver Options dialog box is
used to select algorithmic options and to set
tolerances for the Excel Solver’s solution
methods.

Model buttons in the Solver Options dia-
log box are used.
Solver Options

The user can control several options and
tolerances used by the optimizers through
the Solver Options dialog box (Figure 4).
In the standard Excel Solver, all such op-
tions appear in one dialog box; in the Pre-
mium Solver products, where many more
options and tolerances are available, each
optimizer has a separate dialog box.

The Max Time and the Iterations edit
boxes control the Solver’s running time.
The Show Iteration Results check box in-
structs the Solver to pause after each ma-
jor iteration and display the current “trial
solution” on the spreadsheet. In lieu of
these options, however, the user can sim-
ply press the ESC key at any time to
interrupt the Solver, inspect the current it-
erate, and decide whether to continue or
to stop.

The Assume Linear Model check box
determines whether the simplex method
or the GRG2 nonlinear programming algo-

rithm will be used to solve the problem.
The Use Automatic Scaling check box
causes the model to be rescaled internally
before solution. The Assume Non-
Negative check box places lower bounds
of zero on any decision variables that do
not have explicit bounds in the Con-
straints list box.

The Precision edit box is used by all of
the optimizers and indicates the tolerance
within which constraints are considered
binding and variables are considered inte-
gral in mixed-integer-programming (MIP)
problems. The Tolerance edit box (a some-
what unfortunate name, but Microsoft’s
choice) is the integer optimality or MIP-
gap tolerance used in the branch-and-
bound method. The GRG2 algorithm uses
the Convergence edit box and Estimates,
Derivatives, and Search option button
groups.
Modeling Practice

Excel, including the Solver, offers many
convenient ways to select and manipulate
blocks of cells for variables and con-
straints. Modelers should take advantage
of this feature by laying out optimization
models with indexed sets (for example,
products, regions, or time periods) along
the columns and rows of tables or blocks
of cells. We also highly recommend the
practice of defining names for indexed sets
of variables and constraints and even for
single cells. For example, the structure of
the model with names defined as shown
in Figure 3 is far more easily grasped than
the same model with cell coordinate
ranges as shown in Figure 2. Blocks of
constraint values can often be computed
more easily with Excel’s array of formulas,
which provide some of the high-level fea-

MICROSOFT EXCEL SOLVER

September–October 1998 37

tures of algebraic modeling languages,
though without all of the flexibility of
such languages.

For further suggestions on modeling
practice for spreadsheet optimization, we
encourage readers to consult Conway and
Ragsdale [1997].
User Programmability

The user-programmable interface of-
fered by the Excel Solver—a feature rarely
found in other optimization modeling sys-
tems—is critically important to the many
commercial users who are using Excel and
Microsoft Office as a platform for develop-
ing custom applications. Every interactive,
GUI-based action supported by the Excel
Solver has a counterpart function call in
Visual Basic for Applications (VBA), Ex-
cel’s built-in programming language. (The
earlier Excel macro language is also sup-
ported for backward compatibility.) All
components of Excel share this feature,
making it a flexible platform for decision
support applications. For example, the
new marketing textbook [Lilien and
Rangaswamy 1997] includes a number of
Excel Solver models that are controlled by
VBA programs.
Model Extraction and Evaluation of the
Jacobian Matrix

Like an algebraic modeling system such
as GAMS or AMPL, the Excel Solver ex-
tracts the optimization problem from the
spreadsheet formulas and builds a repre-
sentation of the model suitable for an op-
timizer. For a linear programming (LP)
problem, the focus of this model represen-
tation is the LP coefficient matrix. In more
general terms, this is the Jacobian matrix
of partial derivatives of the problem func-
tions (objective and constraints) with re-

spect to the decision variables. In LP prob-
lems, the matrix entries are constant and
need to be evaluated only once at the start
of the optimization. In nonlinear program-
ming (NLP) problems, the Jacobian matrix
entries are variable and must be recom-
puted at each new trial point.

The Jacobian matrix could be obtained
either analytically by symbolic differentia-
tion of the spreadsheet formulas [Ng and
Char 1979]; or during function evaluation
through so-called automatic differentiation
methods [Griewank and Corliss 1991]; or
it could be approximated by finite differ-
ences [Gill, Murray, and Wright 1981]. This
choice is a major design decision in any
optimization modeling system, with many
trade-offs. What’sBest! can be regarded as
using the symbolic algebraic approach;
systems such as GAMS and AMPI use au-
tomatic differentiation; and the Excel
Solver uses finite differences.

The most important reason for choosing
the finite difference approach for the Excel
Solver was the requirement, set by Micro-
soft, that it support all of Excel’s built-in
functions as well as user-written functions.
Symbolic differentiation would have been
difficult for many of Excel’s several hun-
dred functions (and in fact, What’sBest! re-
jects most of them) and impossible for user-
written functions. To use automatic
differentiation we would have had to mod-
ify the Excel recalculator and require user-
written functions (often coded in other lan-
guages) to supply both function and
derivative values, neither of which was
possible. On the other hand, finite
differences could be efficiently calculated
using the finely tuned Excel recalculator
as is.

FYLSTRA ET AL.

INTERFACES 28:5 38

The Solver is concerned only with those
formulas that relate the objective and con-
straints to the decision variables; it treats
all other formulas on the spreadsheet as
constant in the optimization problem. Ex-
cel, 1-2-3, and Quattro Pro all implement a
form of minimal recalculation in which
only those formulas that are dependent on
the cell values that have changed need to
be recalculated.

In calculating finite differences, the
[i,j]th element of the Jacobian matrix is ap-
proximated by the formula

f (x ` d e) 1 f (x)i j i where d 4 eps |1 4 x |.jd

In this formula, ej is the jth unit vector and
eps is a perturbation factor, typically 1018

approximately equal to the square root of
the machine precision [Gill, Murray, and
Wright 1981]. After an initial recalculation
to evaluate f(x), the Solver perturbs each
variable in turn, recalculates the spread-
sheet, and obtains values for the jth col-
umn of the Jacobian matrix. Hence the
process requires n ` 1 recalculations for
an n variable problem; each recalculation
after the first perturbs just one variable
and resets another, thereby taking advan-
tage of the spreadsheet’s minimal recalcu-
lation feature.
Modeling Practice

The use of finite differences in the Excel
Solver has a number of implications for
spreadsheet modelers. The Solver’s model
processing allows users to employ any of
Excel’s several hundred built-in functions,
as well as user-written functions, in con-
structing the spreadsheet. While many of
these functions have nonlinear or non-
smooth values, they can be used freely to

compute parameters of the model that do
not depend on the decision variables, even
if the optimization model is an LP. Indeed,
it is often convenient to use IF, CHOOSE,
and table LOOKUP functions in calculat-
ing parameters, and we frequently see
these functions in models created by com-
mercial users of Frontline Systems’ Pre-
mium Solver products.

Computing finite differences does, how-
ever, take time to recalculate the spread-
sheet. Bearing in mind that Excel will re-
calculate every formula on the current
worksheet that depends on the decision
variables—even those not involved in the
optimization model—modelers can mini-
mize this time by keeping auxiliary calcu-
lations on a separate worksheet. Because
of the significant overhead in recalculating
multiple worksheets, the Excel Solver cur-
rently requires that cells for the decision
variables, the objective, and the left-hand
sides of constraints appear on the active
sheet, although model formulas and right-
hand sides of constraints can refer to other
sheets.

For users with models that take a long
time to recalculate, we strongly recom-
mend an upgrade to Excel 97, the latest
version of Excel at this writing. Recalcula-
tion performance is greatly improved in
this version, and the Solver is correspond-
ingly faster on the majority of models.
Frontline Systems’ Premium Solver prod-
ucts offer additional ways to speed up
evaluation of the Jacobian matrix (Table 1),
and we plan further improvements in this
area.
Solving Linear Problems

When a user checks the Assume Linear
Model box (Figure 4) the Excel Solver uses

MICROSOFT EXCEL SOLVER

September–October 1998 39

a straightforward implementation of the
simplex method with bounded variables
to find the optimal solution. This code op-
erates directly on the LP coefficient matrix
(that is, the Jacobian), which is determined
using finite differences. The standard Excel
Solver stores the full matrix, including
zero entries; however, no matrix rows are
required for simple variable bounds.
Frontline Systems’ Large-Scale LP Solver
(Table 1) relies on a sparse representation
of the matrix and of the LU factorization
of the basis with dynamic Markowitz re-
factorization, yielding better memory us-
age and improved numerical stability on
large-scale problems.
Automatic Scaling and Related Pitfalls

Earlier versions of the standard Excel
Solver had no provision for automatic
scaling of the coefficient matrix; they used
values directly from the user’s spread-
sheet. Since it is easy to rescale the objec-
tive and constraint values on the spread-
sheet itself, we did not think that
automatic scaling would be needed, espe-
cially for linear problems. We were wrong.
Over the years, we have received many
spreadsheet models from users—including
business school instructors—that did not
seem to solve correctly. In virtually all of
these cases, the model was very poorly
scaled—for example, with dollar amounts
in millions for some constraints and return
figures in percentages for others—yet none
of these users identified scaling as a prob-
lem. It seems that in the widespread move
to emphasize modeling over algorithms,
such issues as scaling (still important in
using software) have been de-emphasized
or forgotten.

To improve performance of the nonlin-

ear solver in Excel 4.0, we added the Use
Automatic Scaling check box to the Solver
Options dialog box. But this dug a deeper
pitfall for users with linear problems, since
this automatic scaling option had no effect
on the linear solver—and users often over-
looked the documentation of this fact in
Excel’s online Help.

In Excel 97, the Use Automatic Scaling
box applies to both linear and nonlinear
problems. If the user checks this box and
the Assume Linear Model box, the Solver
rescales columns, rows, and right-hand
sides to a common magnitude before be-
ginning the simplex method. It unscales
the solution values before storing them
into cells on the spreadsheet. With this en-
hancement, the simplex solver is able to
handle most poorly scaled models without
any extra effort by the user.
Linearity Test and Related Pitfalls

For the reasons outlined earlier, the Ex-
cel Solver asks the user to specify whether
the model is linear, but it does perform a
simple numerical test to check the linearity
assumption for reasonableness. This li-
nearity test gave rise to another pitfall,
again for poorly scaled models. Prior to
Excel 97, the Solver performed this test af-
ter it had obtained a solution using the
simplex method. It used these solution
values x* and the initial values x0 for the
variables to check that the objective and
each constraint function fi(x), evaluated by
recalculating the spreadsheet, satisfied the
following condition:

0 0 0|f (x*) 1 (f (x) ` ¹f (x)(x* 1 x))| # tol.i i i

Here ¹fi(x0) is the function gradient, that
is, the appropriate row of the LP coeffi-
cient matrix, and tol is the Precision value

FYLSTRA ET AL.

INTERFACES 28:5 40

in the Solver Options dialog box with a
default value of 1016.

Given that the model might contain any
of the hundreds of Excel built-in functions
as well as user-written functions and that
the test is performed at discrete points,
this test cannot be perfect; very occasion-
ally, a model with nonlinear, or even dis-
continuous functions, will pass the linear-
ity test. In practice, however, this linearity
test almost always detects situations in
which the user has accidentally set up a
model that doesn’t satisfy the linearity as-
sumption—and truly linear models will
always pass the linearity test, as long as
they are well scaled.

Unfortunately, linear models that are
poorly scaled will sometimes fail this test.
Since the resulting error message is “The
conditions for Assume Linear Model are
not satisfied,” the user who is not con-
scious of the effect of poor scaling may not
realize that this is the problem. (The only
saving grace is that very poorly scaled
models, which might otherwise yield in-
correct answers in the absence of auto-
matic scaling, almost always give this er-
ror message instead.)

In Excel 97, we have substantially re-
vised the linearity test. The Solver per-
forms a quick check before solving the
problem by verifying that the problem
functions, evaluated at several multiples of
the initial variable values, satisfy the
above condition. If the problem fails this
test, the user is warned against using the
simplex method. When the Solver finds an
optimal solution using the simplex
method it performs a further check. It ver-
ifies that the objective function and con-
straint slacks, obtained by recalculating

the spreadsheet at the optimal point,
match the values provided by the LP solu-
tion within the Precision value in the
Solver Options dialog. As long as the user
selects the Use Automatic Scaling box, so
that the values in the LP matrix are well
scaled internally, this test should be robust
even for poorly scaled models.
Modeling Practice

Students (and instructors) who use Ex-
cel 97, with its automatic scaling and its
improved linearity test, can avoid the pit-
falls described earlier. We strongly encour-
age business school instructors to upgrade
to Excel 97 as soon as possible. Schools
still using Windows 3.1 can obtain an aca-
demic version of Frontline Systems’ Pre-
mium Solver for Excel 5.0 with the same
enhancements, but support for this 16-bit
version will be limited in the future. Still,
we emphasize that, while we have used
scaling methods favored in the literature
[Gill, Murray, and Wright 1981], no auto-
matic scaling method is perfect. It will al-
ways be possible to create examples that
cause problems in spite of automatic scal-
ing, and we suggest that instructors de-
vote at least some time to explaining the
limitations of finite precision computer
arithmetic to students. Ragsdale [1997] ad-
dresses scaling briefly but effectively, for
instance. The example model in Figure 5,
which is available for download on Prac-
tice Online, is a poorly scaled variant of
the Working Capital Management work-
sheet distributed with Excel. It will yield a
nonoptimal solution (of all zeroes) in Excel
5.0 and 7.0 and in Excel 97 if the Use Au-
tomatic Scaling box is cleared. It yields the
correct solution in Excel 97 if the user
checks the Use Automatic Scaling box.

MICROSOFT EXCEL SOLVER

September–October 1998 41

Figure 5: This spreadsheet, which can be downloaded from Practice Online as FIGURE5.XLS, is
a poorly scaled model that “fools” the linearity test in earlier Excel versions, yielding the mes-
sage “The conditions for Assume Linear Model are not satisfied.”

Solving Nonlinear Problems
When the Assume Linear Model box in

the Solver Options dialog is cleared, the
Excel Solver uses the generalized reduced
gradient method, as implemented in the
GRG2 code [Lasdon et al. 1978], to solve
the problem. Like other gradient-based
methods, GRG2 is guaranteed to find a lo-
cal optimum only on problems with con-
tinuously differentiable functions and then
only in the absence of numerical difficul-
ties (such as degeneracy or ill condition-
ing). However, GRG2 has a reputation for
robustness, compared with other nonlinear
optimization methods, on difficult prob-
lems where these conditions are not fully
satisfied.
Problem Representation

GRG2 requires function values and the
Jacobian matrix (which is not constant for
nonlinear models). The Excel Solver ap-
proximates the Jacobian matrix using finite

differences as described earlier and re-
evaluates it at the start of each major
iteration.
Automatic Scaling

A poorly scaled model can cause even
more problems for GRG2 than for the sim-
plex method. The earliest version of the
Excel Solver used variable and constraint
values directly from the spreadsheet, but
as of Excel 4.0 (released in 1992), the
Solver rescales both variable and function
values internally if the user checks the Use
Automatic Scaling box in the Solver Op-
tions dialog box. Unlike the simplex code,
which uses gradient values for scaling (as
of Excel 97), the GRG2 algorithm in Excel
uses typical-value scaling. In this approach
GRG2 rescales the decision variables and
problem functions by dividing by their ini-
tial values at the beginning of the solution
process. (We chose this approach because
our tests showed that gradient-based scal-

FYLSTRA ET AL.

INTERFACES 28:5 42

ing was not very effective on typical non-
linear spreadsheet models where scaling
was a problem.)
GRG2 Stopping Conditions

Like the simplex method, the GRG2 al-
gorithm will stop when it finds an optimal
solution, when the objective appears to be
unbounded, when it can find no feasible
solution, or when it reaches the time limit
or maximum number of iterations. For
nonlinear models, an “optimal solution”
means that the Solver has found a local
optimum where the Kuhn-Tucker condi-
tions are satisfied to within the conver-
gence tolerance; the message displayed is
“Solver found a solution.” GRG2 also
stops when the current solution meets a
“slow progress” test: The relative change
in the objective is less than the conver-
gence tolerance for the last five iterations.
In this case, the message displayed is
“Solver converged to the current solu-
tion.” In previous Excel versions, the con-
vergence tolerance was fixed at 1014 or
1015 (depending on the version) and
could not be changed by the user. In Excel
97, there is new Convergence edit box
(Figure 4) that sets this tolerance.

The message “Solver could not find a
feasible solution” occurs when the GRG2
algorithm terminates with a positive sum
of infeasibilities. This almost always indi-
cates a truly infeasible model, but with
nonlinear problems this can occur (rarely)
in feasible problems if GRG2 finds a local
optimum of the phase one objective (the
sum of the infeasibilities) or if GRG2 sim-
ply terminates in phase one due to slow
progress. Remedies available through the
Solver Options dialog box (Figure 4) in-
clude using automatic scaling, increasing

the feasibility tolerance (Precision option),
decreasing the convergence tolerance to
make it more difficult to terminate in
phase one, trying central differences, and
trying other starting points.
Nonsmooth Functions

The convergence results for gradient-
based methods, such as GRG2, depend on
differentiability of the problem functions.
The spreadsheet formula language is de-
signed to express arbitrary calculations,
and users can easily create optimization
models that include nonsmooth functions,
that is, functions with discontinuous val-
ues or first partial derivatives at one or
more points. Examples of such functions
are ABS, MIN and MAX, INT and
ROUND, CEILING and FLOOR, and the
commonly used IF, CHOOSE, and
LOOKUP functions. Expressions involving
relations (outside the context of Solver-
recognized constraints) and such Boolean
operators as AND, OR, and NOT are dis-
continuous at their points of transition be-
tween FALSE and TRUE values.

The presence of any of these (or many
other) functions in a spreadsheet does not
necessarily mean that the optimization
model is nonsmooth. For example, an IF
function whose conditional expression is
independent of the decision variables and
whose result expressions are smooth is it-
self smooth. Similar statements apply to
the other functions mentioned above.

Even if the problem is nonsmooth,
GRG2 may never encounter a point of dis-
continuity. This depends on the path that
the algorithm takes, which depends on the
starting point. GRG2 may simply skip
over a discontinuity or may never encoun-
ter a region where discontinuities occur.

MICROSOFT EXCEL SOLVER

September–October 1998 43

Problems occur when the finite difference
process (which approximates partial deriv-
atives) spans both sides of a discontinuity,
for then the estimated derivatives are
likely to be very large. If GRG2 is converg-
ing to a local solution where the objective
is nonsmooth, inaccurate derivative esti-
mates near the solution are likely to cause
it to oscillate about that point and to ter-
minate because of a small fractional
change in the objective.
Modeling Practice

The path GRG2 takes and the scaling

factors it uses depend on the initial values
of the variables. Users should take care to
start the solution process with values for
the variable cells that are representative of
the values expected at the optimal solu-
tion, rather than with arbitrary values,
such as all zeroes. The example spread-
sheet in Figure 6, which is available for
download on Practice Online, is an Excel
version of a product-mix and pricing
model from Fylstra [1992]. If the model is
solved with initial values of zero for all
four variables, GRG2 stops immediately,

Figure 6: This spreadsheet, which can be downloaded from Practice Online as FIGURE6.XLS,
causes the GRG2 nonlinear solver to stop at a nonoptimal solution if the initial values of all
variables are zero. GRG2 finds the correct optimal solution for initial variable values that make
the profits per unit positive.

FYLSTRA ET AL.

INTERFACES 28:5 44

declaring this point to be an “optimal so-
lution” (in fact, this point is a Kuhn-
Tucker point). With initial values that
make each quantity to build and the profit
per unit positive, GRG2 finds the correct
optimal solution. Alternatively, if one
changes the constraint that requires pro-
duction to be less than or equal to demand
to an equality constraint, GRG2 is able to
find the correct solution even with initial
values of zero, since it can solve for certain
variables in terms of others.

We encourage users who encounter dif-
ficulty with slow progress or who receive
the message “Solver converged to the cur-
rent solution” to upgrade to Excel 97,
which allows them to control the conver-
gence tolerance. The example model in

Figure 7, also available for download on
Practice Online, is a variant of the Quick
Tour worksheet distributed with Excel. If
this model is solved in Excel 97 with the
default convergence tolerance of 1014, the
Solver stops with the message “Solver
converged to the current solution” and an
objective value of $79,705.55, just short of
the true optimum. If the convergence tol-
erance is tightened to 1015, the Solver
stops with “Solver found a solution” and
an objective value of $79,705.62. (In Excel
5.0 and 7.0, solving this model yields the
optimal objective of $79,705.62, because
the convergence tolerance is hard-wired in
these versions to 1015.)

GRG2 uses the value in the Precision
edit box shown in Figure 4 (default 1016)

Figure 7: This spreadsheet, which can be downloaded from Practice Online as FIGURE7.XLS,
shows how the GRG2 nonlinear solver can stop with the message “Solver converged to the cur-
rent solution.” With a tighter convergence tolerance, it stops at a slightly better, optimal point
with the message “Solver found a solution.”

MICROSOFT EXCEL SOLVER

September–October 1998 45

for its feasibility tolerance. Constraints are
classified as active when they are within
this (absolute) tolerance of one of their
bounds and are violated when their bound
violation exceeds this tolerance. The de-
fault value is rather tight for nonlinear
problems, and users may find that they
can solve some problems with nonlinear
constraints faster or even to a better result
if they increase this value. We recommend
1014 for nonlinear problems but caution
against using values greater than 1012.
Users requiring high accuracy may prefer
the default value. For nonlinear problems,
maximum accuracy results from choosing
central differences and the default feasibil-
ity tolerance.

When a model is nonsmooth or noncon-
vex, we recommend trying several differ-
ent starting points. If GRG2 reaches
roughly the same final point, one can be
fairly confident that this is a global solu-
tion. If not, one can choose the best of the
solutions obtained.

For further information on reduced gra-
dient methods and the GRG2 solver, see
Lasdon and Smith [1992].
Solving Problems with Integer
Constraints

When a problem includes integer vari-
ables, the Excel Solver invokes a branch-
and-bound (B&B) algorithm that can use
either the simplex method or GRG2 to
solve its subproblems. The user indicates
which of the decision variables are integer
by adding constraints, such as A1:A10 4

integer (or, in Excel 97, A1:A10 4 binary),
where A1:A10 is a range of variable cells.
(One enters such constraints by selecting
“int” or “bin” from the Relation list in the
Add or Change Constraints dialog box.)

The branch-and-bound algorithm starts
by solving the relaxed problem (without
the integer constraints) using either GRG2
or the simplex method, yielding an initial
best bound for the problem including the
integer constraints. The algorithm then be-
gins branching and solving subproblems
with additional (or tighter) bounds on the
integer variables. A subproblem whose so-
lution satisfies all of the integer constraints
is a candidate for the solution of the over-
all problem; the candidate with the best
objective value so far is saved as the in-
cumbent. The algorithm uses the best ob-
jective of the remaining nodes to be fath-
omed to update the best bound. Each time
the algorithm finds a new incumbent, it
computes the relative difference between
its objective and the current best bound,
yielding an upper bound on the improve-
ment in the objective that might be ob-
tained by continuing the solution process:

Objective(Incumbent) 1 Objective(BestBound)
.

Objective(BestBound)

If this value is less than or equal to the
Tolerance edit box value (Figure 4), the al-
gorithm stops. Some users have failed to
notice that the default tolerance amount is
not zero but 0.05 and have therefore con-
cluded that the Excel Solver was not find-
ing the correct integer solution. We chose
this default value, at Microsoft’s request,
to limit the time taken by nontrivial inte-
ger problems. It often happens that the
branch-and-bound algorithm finds a rea-
sonably good solution fairly quickly and
then spends a great deal of time finding
(or verifying that it has found) the true in-
teger optimal solution.

In the standard Excel Solver, the branch-

FYLSTRA ET AL.

INTERFACES 28:5 46

and-bound algorithm uses a breadth-first
search that branches on the unfathomed
node with the best objective. Frontline Sys-
tems’ Premium Solver products use much
more elaborate strategies (Table 1). These
include a depth-first search that continues
until it finds an incumbent, followed by a
breadth-first search; more sophisticated
rules for choosing the next node to be fath-
omed; rules for reordering the integer vari-
ables chosen for branching; use of the dual-
simplex method for the subproblems; and
preprocessing-and-probing (P&P) strategies
for binary integer variables. These im-
provements often dramatically reduce solu-
tion time on integer problems (Table 1).

It is possible to solve nonlinear integer
problems with the Excel Solver, but users
should be aware of the intrinsic limitations
of this process. On a linear problem, the
simplex method can conclusively deter-
mine whether each subproblem is feasible
and, if so, return the globally optimal so-
lution to that subproblem. On nonlinear
integer problems, the GRG algorithm (or
any gradient-based method) may fail to
find a feasible solution for a subproblem
even though one exists, or it may return a
local optimum that is not global. This also
means that the best bound used by the
branch-and-bound algorithm will be based
on local optima found by GRG2 and this
may not be the global optimum. Because
of this, the branch-and-bound algorithm is
not guaranteed to find the true integer op-
timum for nonlinear problems, although
it will often succeed in finding a “good”
integer solution.
Modeling Practice

It is important for users to understand
the role of the Tolerance edit box value. In

a classroom environment, instructors may
wish to have students set this value to
zero to ensure that the Solver will con-
tinue branching until it finds the optimal
integer solution.

Users attempting to solve nonlinear in-
teger problems should also take careful
note of the limitations cited above for the
branch-and-bound algorithm when used
with GRG2.

Even small, academic-size integer prob-
lems may require a great deal of solution
time with the standard Excel Solver. Here
again, we recommend an upgrade to Excel
97, which will improve solution times for
both linear and nonlinear subproblems.
An even better alternative is Frontline Sys-
tems’ Premium Solver for Excel 97, which
offers algorithmic improvements to reduce
both the number of subproblems and the
time spent on each one. An academic ver-
sion of the Premium Solver is available
and has proven quite popular with busi-
ness school instructors.
Saving the Solution and Producing
Solver Reports

When one of the Excel Solver’s optimiz-
ers returns a solution, the Solver places the
solution values into the decision variable
cells, recalculates the spreadsheet, and dis-
plays the Solver Results dialog box
(Figure 8). From this dialog box, the user
can choose to keep the optimal solution, or
discard it and restore the initial values of
the variables. In addition, the user can se-
lect one or more reports, which the Solver
will then produce in the form of addi-
tional worksheets inserted into the current
workbook.

Assuming that the user (or a Visual Ba-
sic program controlling the Solver) decides

MICROSOFT EXCEL SOLVER

September–October 1998 47

Figure 8: The Solver Results dialog box is displayed whenever the Solver stops. It allows the
user to keep the solution or restore the original values of the variable cells and produce one or
more of the Solver’s reports.

to keep the solution, the Solver updates all
of the model’s results appropriately, in-
cluding the objective, the constraints, and
other auxiliary calculations that depend on
the decision variables. One can use any of
these model values to draw charts and
graphs, update external databases, and the
like using standard Excel facilities. A Vi-
sual Basic program may also inspect the
values and may further manipulate them
or store them for later use. For example, it
is an easy classroom exercise to generate
and graph the efficient frontier in a portfo-
lio optimization problem in finance.

The standard Excel Solver can produce
three types of reports: the Answer Report
(Figure 9), the Sensitivity Report (Figure
10), and the Limits Report (Figure 11). The
Premium Solver products (Table 1) can
also produce a Linearity Report and a Fea-
sibility Report. The Linearity Report high-
lights the constraints involved when an at-
tempt to solve with the simplex method
fails the linearity test described earlier. The
Feasibility Report highlights an “irreduci-
ble inconsistent system” of constraints
[Chinneck 1997] when an attempt to solve
a linear problem yields no feasible

solution.
The Answer Report provides the initial

and final values of the variables and the
objective and optimal values for each con-
straint’s left-hand side as well as slack
values for nonbinding constraints.

The Sensitivity Report provides final so-
lution values and dual values for variables
and constraints in both linear and nonlin-
ear models. For linear models, the dual
values are labeled “reduced costs” and
“shadow prices”; their values and ranges
of validity are included in the report. For
nonlinear models, the dual values are
valid only for small changes about the op-
timal point, and they are labeled “reduced
gradients” and “Lagrange multipliers.”

The Solver creates the Limits Report by
rerunning the optimizer with each deci-
sion variable selected in turn as the objec-
tive, both maximizing and minimizing,
while holding all other variables fixed at
their optimal values. The report shows the
resulting lower limit and upper limit for
each variable and the corresponding value
of the original objective function. OR/MS
professionals are sometimes puzzled by
the inclusion of this report, but Microsoft

FYLSTRA ET AL.

INTERFACES 28:5 48

Figure 9: The Answer Report summarizes the initial and final values of the variables, con-
straints, and objective and indicates whether the constraints are binding (satisfied with equal-
ity) or have slack.

specified it for competitive reasons, since
the former Lotus-developed solver in 1-2-3
featured a similar report.
Report Pitfalls

There are two pitfalls that users some-
times encounter with these reports. The
more common problem arises from the
fact that the report spreadsheets are con-
structed so that each cell “inherits” its for-
matting from the corresponding cell in the
user’s model. This feature, which Micro-
soft specified, has the advantage that the

report values are automatically formatted
with dollars and cents, percent symbols,
scientific notation, or whatever custom
formatting was used in the model. The pit-
fall arises when users format their models
to display variable and constraint values
rounded to integers (say), which causes
the corresponding dual values to be for-
matted as integers also. Not realizing this,
some users think that the dual values are
wrong. However, the Solver stores the
dual values to full precision on the report

MICROSOFT EXCEL SOLVER

September–October 1998 49

Figure 10: The Sensitivity Report shows, for linear problems, reduced costs for the variables
and shadow prices for the constraints, as well as the ranges of validity of these dual values.

Figure 11: The Limits Report shows the objective value obtained by maximizing and minimiz-
ing each variable in turn while holding the other variables’ values constant.

FYLSTRA ET AL.

INTERFACES 28:5 50

spreadsheet; one can inspect each value by
selecting it with the mouse, and one can
easily reformat the values to whatever pre-
cision one desires.

The second pitfall relates only to the
Sensitivity Report. The Excel Solver recog-
nizes constraints that are simple bounds
on the variables and passes them in this
form to both the simplex and GRG2 op-
timizers, where they are handled more ef-
ficiently than if they were included as gen-
eral constraints. If one of these constraints
is binding at the solution this actually
means that the corresponding decision
variable has been driven to its bound. The
dual value for this binding constraint will
appear as a reduced cost for the decision
variable, rather than as a shadow price for
the constraint; it will be nonzero if the
variable was nonbasic at the solution. (In
fact, constraints that are simple bounds on
the variables are never listed in the Con-
straints section of the Sensitivity Report.)

We encourage modelers to take advan-
tage of the fact that the reports are spread-
sheets. Not only can they view them but
they can easily modify them, use them to
draw charts and graphs, transfer them to
other programs, or inspect them using Vi-
sual Basic programs. Since the reports
show a text label as well as a cell reference
for each variable and constraint, users can
easily design their spreadsheet models so
that meaningful labels appear on the re-
ports. The algorithm for constructing these
labels is very simple: starting from the
variable or constraint cell on the model
worksheet, the Solver looks left and up for
the first text label in the same row and
the first text label in the same column. It
then concatenates these two labels to

form the label that appears for that cell in
the report.

Users should avoid the pitfalls cited
above. Because the default formatting for
cells is general, report values will appear
to full precision unless the user defines
custom formatting for the variable or con-
straint cells. If one wants such formatting,
one must simply bear in mind its effect on
the reports. To see the dual values for sim-
ple variable bounds in the Constraints sec-
tion of the Sensitivity Report, one can
modify the constraint right-hand side to
be (say) the formula 0 ` 5 rather than the
constant 5. In this case, the Solver will not
recognize the constraint as a simple vari-
able bound. In Frontline Systems’ Pre-
mium Solver products, we changed this
report so that dual values always appear
in the Constraints section of the report,
even for constraints that are recognized as
simple variable bounds, making this
work-around unnecessary.
Use of the Solver in Industry

We have heard many opinions about
use of the Excel Solver from OR/MS pro-
fessionals. Many view spreadsheet solvers
as suitable only for quite small problems
or only for educational rather than indus-
trial use. Some wonder how such tools can
be successfully employed by individuals
with little if any formal training in
OR/MS methods. Some, seeing little usage
of the Excel Solver among their colleagues,
think that the Solver is widely distributed
but not very widely used.

We do not have enough systematic data
to project the actual number of users of
the Excel Solver among the 30-million-plus
copies of Microsoft Office and Excel dis-
tributed to date. But based on our contacts

MICROSOFT EXCEL SOLVER

September–October 1998 51

with users and the data we do have, we
believe that OR/MS professionals are see-
ing only the proverbial tip of the iceberg
and that use of the Excel Solver is far
more widespread than their comments
would suggest.
Problem Size

Having worked with commercial users
for more than five years, we are very con-
fident that spreadsheet solvers are capable
of solving the majority of industrial LP
models, as well as many integer and non-
linear models. We base this belief on our
own experience and on information about
problem size gained in discussions with
other vendors of (non-spreadsheet-based)
optimization software. In fact, we believe
that the median-size industrial LP model
is smaller than many OR/MS profession-
als might expect—possibly as small as
2,000 rows and columns. Spreadsheet op-
timizers can readily handle problems well
above this size.
Model Developers

OR/MS professionals usually create op-
timization models in situations where the
modeling task is challenging enough and
the economic value of the problem is large
enough to justify expert consulting help.
These problems are often much larger than
our median size estimate. But this is a tiny
part of the spectrum of optimization appli-
cations that we see. Many spreadsheet
models are straightforward, successful
adaptations of classic forms, such as trans-
portation, blending, multiperiod inventory,
and portfolio-optimization problems.
These models are created by functional
managers who base them on the examples
supplied with Excel or found in various
books (indeed, such users often seek out

the textbooks that we feature on the Front-
line Systems’ Web site). In other cases,
these spreadsheet optimization models are
created by outside consultants with indus-
try expertise, rather than OR/MS expertise
per se.
OR/MS Training

Every day we see successful Solver ap-
plications created by spreadsheet users
with little or no formal OR/MS training.
Users of Frontline Systems’ Premium
Solver products are typically solving LP
models in the range of several hundred to
a few thousand (some as large as 10,000)
decision variables and constraints and in-
teger and nonlinear problems of some-
what smaller size. Although this group is
self-selected for applications more ambi-
tious than those built with the standard
Excel Solver, we estimate that 90 to 95 per-
cent of these users have no affiliation with
the OR/MS community. They are clearly
“dispersed practitioners” [Geoffrion 1991].

Yet this is just another layer of the ice-
berg. A much larger number of Excel
Solver users visit Frontline Systems’ World
Wide Web site (www.frontsys.com), which
receives more than 10,000 “hits” per day.
We have some survey data on these users
that indicate that a surprising number of
Solver applications are below 200 vari-
ables in size but are of sufficient value that
their developers are planning to distribute
copies of these applications within their
organizations or commercially. This
survey data and our experience in techni-
cal support lead us to believe that this
class of applications is at least five
times and perhaps 10 times larger than
the class of applications above 200
variables.

FYLSTRA ET AL.

INTERFACES 28:5 52

Still deeper in the iceberg are the
smaller-size spreadsheet solver applica-
tions that are developed for use within
only one department or office and not for
redistribution. These users may well find
that the standard Excel Solver, Microsoft
technical support, and the variety of trade
books about Excel meet all of their needs.
We believe that this group is the largest of
all, but we are unable to estimate its size.
In any case, we are reasonably certain that
OR/MS professionals collectively are in-
volved in, at most, a fraction of one per-
cent of the Excel Solver applications actu-
ally in use.
Economic Value

Small optimization models may yield
high economic value. In one case, a For-
tune 50 company (which prefers to remain
anonymous) used the standard Excel
Solver to build a purchasing logistics
model used in negotiating contracts for
over a billion dollars worth of a single
commodity. This model, whose size was a
function of the number of supplier loca-
tions and company plants, fit within the
200-variable limit of the standard Solver.
Savings from use of this model amounted
to nearly $3 million in the first round of
purchasing negotiations and the company
estimates future savings of $7 million per
year. A major difference from the OR/MS
successes of the 1970s was the time and ef-
fort required to formulate, test, and gain
acceptance of this model. One individual,
with no formal OR/MS training, com-
pleted the entire project in three person-
months, with about one month spent on
the actual optimization model. The result-
ing spreadsheet is operated directly by the
senior vice president of purchasing. The

return on investment in such application
projects is extremely high.
Use of the Solver in Education

Spreadsheets have become the preferred
tool for teaching quantitative methods to
undergraduate and graduate business stu-
dents. Their use is strongly endorsed in a
recent report of the operating subcommit-
tee of the INFORMS Business School Edu-
cation Task Force [Jordan et al. 1997]. In
July 1994, the presidents of ORSA and
TIMS, Dick Larson and Gary Lilien, char-
tered the INFORMS Business School Edu-
cation Task Force in response to the de-
cline of OR/MS content in business
education that began in the early ’90s. The
task force’s survey of business school
OR/MS faculty (306 responses) revealed
that many faculty members planned to in-
crease their use of spreadsheets (Table 2)
to strengthen the role of OR/MS in their
MBA programs.

The subcommittee also conducted struc-
tured telephone interviews with program
administrators at 21 of the leading MBA
programs in the US. One of the questions
they asked was “What particular sets of
quantitative skills are in greatest demand
from employers of your graduates?” The
interpretation of responses was “Demand
for particular ‘hard’ OR/MS skills is very
low. Where technique is needed, it in-
volves statistics more than OR/MS. There
is demand for general skill in model for-
mulation and interpretation and in quanti-
tative reasoning.” A related question was
“What level of competence is appropriate
for MBAs?” and it had the summarized re-
sponse “MBAs need to be able to use
spreadsheets and statistical software at the
level of the ‘educated consumer.’ ”

MICROSOFT EXCEL SOLVER

September–October 1998 53

Questions and responses %

Which of the following “fixes” have the highest potential to strengthen the role of MS/OR
in your particular school of business?

More use of cases and real-world examples 60
More emphasis on modeling skills and numeracy and less on algorithms 55
Better math background for students 49
Use of spreadsheets instead of special purpose OR/MS software 39

What changes are you planning to make in your MS/OR course in the near future?
More emphasis on modeling and less on the teaching of algorithms 55
Increasing the role of the computer in the course 43
More use of spreadsheets in the course 37
More case analyses 34

Table 2: Two questions and the most often selected responses from the INFORMS Business
School Education Task Force’s 1997 survey of business school OR/MS faculty (306 respon-
dents).

The authors of the report conclude that
OR/MS courses in business schools
should focus on common, realistic busi-
ness situations, acknowledge important
nonmathematical issues, use spreadsheets,
and emphasize model formulation and
assessment more than model structuring.
Recommendations include the following:
embed analytical material strongly in a
business context; use spreadsheets as a de-
livery vehicle for OR/MS algorithms; and
stress the development of general model-
ing skills.

There are now strong trends in these di-
rections, most of which began well before
the INFORMS report appeared. They are
most prominent in the form of new text-
books for the basic OR/MS course for un-
dergraduate or graduate business stu-
dents. Such texts include those of Hesse
[1997], Ragsdale [1997], Winston and
Albright [1997], a revision of the Eppen
and Gould text [Eppen et al. 1998], and a
book by Sam Savage [1997]. The authors
use spreadsheet models as the focus
around which they base all discussion and

examples. All use the Excel Solver for op-
timization, and several use spreadsheet
add-ins for decision tree analysis and
Monte Carlo simulation. All include a disk
containing a complete set of spreadsheet
files, bundled with the text and intended
for student use, and an instructor’s disk or
CD-ROM containing spreadsheets for each
problem and case. Some contain a shell
version of the instructor spreadsheets, in
which the members and formulas are
omitted. These greatly ease the instructor’s
task of grading many spreadsheets, espe-
cially when he or she uses the grading
macros that are provided for some
problems.

In the introductions to these texts, the
authors advocate a course based on learn-
ing modeling by doing examples. They in-
clude many traditional examples from the
operations management area of business:
production and inventory planning, distri-
bution inventory models, and so forth. In
addition, they include problems from fi-
nance (portfolio selection, options pricing,
cash management), and marketing (sales-

FYLSTRA ET AL.

INTERFACES 28:5 54

force allocation). Problems in finance and
marketing are often of more interest to
MBA students than the traditional opera-
tions examples.

Outside the traditional OR/MS course,
new texts are also appearing with a focus
on spreadsheets. For example, the market-
ing textbook by Lilien and Rangaswamy
[1997] includes 17 models in Excel, most
using the Solver, controlled by the au-
thors’ programs written in Visual Basic for
Applications.

For more on configuring a successful
OR/MS course for business students see
the articles by Bodily [1996] and Powell
[1995] and many other articles in the
“Teachers forum” section of Interfaces.
Conclusions and Directions
for Future Work

We designed the Excel Solver to “make
optimization a feature of spreadsheets.”
Where OR/MS professionals tend to see it
as simply another tool for doing optimiza-
tion, managers in industry tend to see it as
an extension of spreadsheet technology
that enables them to solve resource-
allocation problems in a new way, in their
own work groups, without outside help.

Our most important direction for future
work is to extend the range of optimiza-
tion problems that managers can solve
without special OR/MS training or out-
side help. Classical linear and smooth non-
linear functions are too restrictive for
many of the problems our users want to
solve. The use of integer variables and
special constraints to express such con-
structs as fixed charges and either-or con-
ditions is unnecessarily complex for users;
familiar spreadsheet functions, such as IF,
CHOOSE, and LOOKUP (which may de-

pend on the variables), could be used to
express these concepts directly. In the fu-
ture, we would like to support the creation
of optimization models using as much of
the full power of the spreadsheet formula
language as possible. To do this, we expect
to perform more analysis and transforma-
tion of the spreadsheet formulas, obtaining
the Jacobian matrix through a combination
of automatic differentiation of the most
common operators and functions and the
selective use of finite differences for oth-
ers. We are also considering approaches to
global optimization and heuristics and al-
gorithmic methods that yield good solu-
tions that may not be provably optimal
(for example, clustering methods, genetic
algorithms, and simulated annealing),
since our users have clearly indicated their
interest in such methods.

Spreadsheets, such as Excel, have be-
come so ubiquitous that they serve as a
kind of lingua franca for quantitative
models, understood by nearly every deci-
sion maker in industry, government, and
education. Because of this universality,
spreadsheet software has become an excel-
lent delivery vehicle for such OR/MS
techniques as optimization, as the Excel
Solver clearly demonstrates. We encourage
OR/MS professionals to gain experience
with these tools and explore the world of
spreadsheet-based problem solving that
continues to grow outside the traditional
boundaries of the field.

We also encourage OR/MS profession-
als to communicate with Microsoft and
with Frontline Systems about their desires
for the Excel Solver. E-mail is the preferred
method: Microsoft welcomes feedback on
the Solver and other Excel features sent to

MICROSOFT EXCEL SOLVER

September–October 1998 55

xlwish@microsoft.com, while Frontline
Systems welcomes feedback sent to
info@frontsys.com. By making their voices
heard, OR/MS professionals can influence
the future direction of software such as the
Excel Solver.
References
Bodily, S. 1996, “Teaching MBA quantitative

business analysis with cases,” Interfaces, Vol.
26, No. 6, pp. 132–149.

Brooke, A.; Kendrick, D.; and Meeraus, A.
1992, GAMS, A User’s Guide, Boyd and Fra-
ser, Danvers, Massachusetts.

Chinneck, J. W. 1997, “Finding a useful subset
of constraints for analysis in an infeasible lin-
ear program,” INFORMS Journal on Comput-
ing, Vol. 9, No. 2, pp. 164–174.

Conway, D. and Ragsdale, C. 1987, “Modeling
optimization problems in the unstructured
world of spreadsheets,” Omega, Vol. 25, No.
3, pp. 313–322.

Enfin Software Corporation 1988, Optimal So-
lutions User Manual, San Diego, California.

Eppen, G. D.; Gould, F.; Schmidt, C.; Moore, J.;
and Weatherford, L. 1998, Introductory
Management Science: Decision Modeling with
Spreadsheets, fifth edition, Prentice Hall, En-
glewood Cliffs, New Jersey.

Fourer, R.; Gay, D. M.; and Kernighan, B. W.
1993, AMPL: A Modeling Language for Mathe-
matical Programming, Duxbury Press, Pacific
Grove, California.

Frontline Systems Inc. 1990, What-If Solver User
Guide, Incline Village, Nevada.

Frontline Systems Inc. 1994, Solver User Guide:
Premium, Quadratic, and Large-Scale LP Solv-
ers, Incline Village, Nevada.

Fylstra, D. 1992, The Student Edition of What-If
Solver, Addison-Wesley Longman, Reading,
Massachusetts.

Geoffrion, A. M. 1991, “Forces, trends, and op-
portunities in management science and
operations research,” Operations Research, Vol.
4, No. 3, pp. 423–445.

Gill, P. E.; Murray, W.; and Wright, M. H. 1981,
Practical Optimization, Academic Press, San
Diego, California.

Griewank, A. and Corliss, G. F. 1991, Automatic
Differentiation of Algorithms: Theory, Implemen-
tation, and Application, SIAM Press, Philadel-

phia, Pennsylvania.
Hesse, R. 1997, Managerial Spreadsheet Modeling

and Analysis, Richard D. Irwin, Burr Ridge,
Illinois.

Jordan, E.; Lasdon, L.; Lenard, M.; Moore, J.;
Powell, S.; and Willemain, T. 1997, “OR/MS
and MBA’s—Mediating the mismatches,”
OR/MS Today, February, pp. 36–41.

Lasdon, L. S.; Waren, A. D.; Jain, A.; and Ratner,
M. 1978, “Design and testing of a generalized
reduced gradient code for nonlinear program-
ming,” ACM Transactions on Mathematical Soft-
ware, Vol. 4, No. 1, pp. 34–49.

Lasdon, L. S. and Smith, S. 1992, “Solving large
sparse nonlinear programs using GRG,”
ORSA Journal on Computing, Vol. 4, No. 1, pp.
2–15.

Lilien, G. and Rangaswamy, A. 1997, Marketing
Engineering: Computer-Assisted Marketing
Analysis and Planning, Addison-Wesley Long-
man, Reading, Massachusetts.

Lotus Development Corp. 1990, 1-2-3/G User
Guide, Cambridge, Massachusetts.

Ng, E. and Char, B. W. 1979, “Gradient and Ja-
cobian computation for numerical applica-
tions,” Proceedings of the 1979 Macsyma User’s
Conference, Washington, DC, pp. 604–621.

Person, R. 1997, Using Microsoft Excel 97, Que
Corp./Macmillian Computer Publishing, In-
dianapolis, Indiana.

Powell, S. G. 1995, “Teaching the art of model-
ing to MBA students,” Interfaces, Vol. 25, No.
3, pp. 88–94.

Ragsdale, C. T. 1997, Spreadsheet Modeling and
Decision Analysis, second edition, South-
Western Publishing, Cambridge,
Massachusetts.

Savage, S. L. 1985, What’sBest! User Manual,
General Optimization Inc., Chicago, Illinois.

Savage, S. L. 1997, INSIGHT Business Analysis
Tools for Excel, Duxbury Press, Pacific Grove,
California.

Winston, W. L. and Albright, S. C. 1997, Practi-
cal Management Science: Spreadsheet Modeling
and Applications, Duxbury Press, Pacific
Grove, California.

